OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Hongliang Lu

College of Engineering ,Peking University

Joint work with Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, Zaiwen Wen

- Introduction
- Preliminaries and Overview
- 3 Feedback-Driven PD Generation
- 4 The Data Synthesis and Training Methodology
- 5 Numerical Experiments

Background

The challenge, and art, in using convex optimization is in recognizing and formulating the problem. Once this formulation is done, solving the problem is, like least-squares or linear programming, (almost) technology.¹

Description

A company has three transportation options to choose from to transport 25 tons of cargo, namely trucks, airplanes, and ships with costs \$100, \$120, \$80 per ton and capacities of 10, 20, 30 tons respectively. The company can't choose trucks and ships together. How should the company optimize the selection and allocation of these methods to minimize overall costs?

Formulation

Variables:

 x_1,x_2,x_3 0-1variables indicating whether trucks, airplanes, and ships are are selected, respectively.

 y_1,y_2,y_3 Non-negative continuous variables indicating the volume of cargo.

Objectives:

 $\begin{array}{l} \text{Minimize } 100y_1 + 120y_2 + 80y_3 \\ \textbf{Constraints:} \end{array}$

 $\begin{array}{l} x_1 + x_2 + x_3 \geq 1 \\ y_1 \leq 10x_1, y_2 \leq 20x_2, y_3 \leq 30x_3 \end{array}$

 $x_1 + x_3 \le 1$

 $y_1 + y_2 + y_3 \ge 25$

 $x_1, x_2, x_3 \in \{0, 1\}$

Python Code

import gurobipy as gp from gurobipy import GRB

model = gp.Model("Cargo_Transportation")

Define decision variables y1 = model.addVar(vtype=GRB.CONTINUOUS, name="Trucks_Tons", lb=0)

model.setObjective(100*y1 + 120*y2 + 80*y3, GRB.MINIMIZE) # Constraints

model.optimize()
Print the result
if model.status == GRB.OPTIMAL:

Boyd, Stephen. "Convex optimization." Cambridge UP (2004).

LLMs for Automated Optimization Modeling

Motivation: Although solver technologies are quite advanced, the process of building optimization models still heavily relies on human expertise. The goal of automated modeling is to reduce this dependency, allowing more people without expertise in optimization to benefit from optimization techniques.

Related Works:

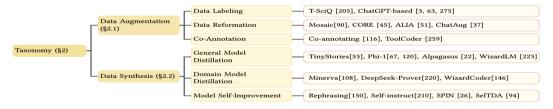
- NL4Opt Competition Initial exploration of using LLMs for assisted modeling.
- **OptiMUS** Prompt engineering and agent-based approach.
- **ORLM** Synthetic data and model fine-tuning approach.
- **LLMOPT** Model fine-tuning and alignment approach.

Main Challenges:

- Prompt-based methods rely on LLMs' inherent modeling capability without enhancing it.
- Learning-based methods lack large-scale, high-quality optimization problem datasets.

Data Synthesis

- Fine-tuning relies heavily on training data and the selection of a base model.
- The release of o1 has sparked significant interest in data synthesis.
- Existing data synthesis methods fall into two categories ²:



- Data Augmentation: Enhances existing samples through augmentations techniques.
- Data Synthesis: Creates new samples from scratch or via GPT.

Challenges: How to synthesize large-scale, high-quality data for Optimization Modeling?

²Wang, Ke, et al. "A survey on data synthesis and augmentation for large language models." arXiv preprint arXiv:2410.12896 (2024): 🔻 🗦 🕨

- Introduction
- 2 Preliminaries and Overview
- 3 Feedback-Driven PD Generation
- 4 The Data Synthesis and Training Methodology
- 5 Numerical Experiments

Standard Optimization Problem

Standard Form:

$$g(\mathbf{x}),$$
 subject to $g(\mathbf{x}) = 0,$ $i \in \mathcal{E},$ $c_i(\mathbf{x}) \geq 0,$ $i \in \mathcal{I}.$

Where:

- $\mathbf{x} \in \mathbb{R}^n$: Decision vector.
- $g: \mathbb{R}^n \to \mathbb{R}$: Objective function.
- $c_i : \mathbb{R}^n \to \mathbb{R}$: Constraint functions.
- \bullet \mathcal{E}, \mathcal{I} : Index sets for equality and inequality constraints respectively.

Main Challenges:

- Modern solvers (e.g., Gurobi, Mosek) can efficiently solve optimization problems using algorithms like interior-point methods.
- The primary challenge lies in transforming real-world problems into precise mathematical formulations.

Problem Formulation

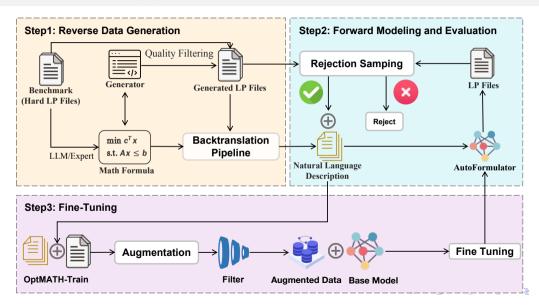
The formulation for increasing the modeling capability of the LLM can be expressed as:

$$\begin{aligned} & \max_{\theta} \quad \mathbb{E}_{(\text{NL}, \text{MF}, \text{PD}) \sim \mathcal{D}}[\textit{Q}_{(\text{NL}, \text{MF}, \text{PD})}(\text{MF}', \text{PD}')] \\ & \text{s.t.} \quad (\text{MF}', \text{PD}') = \mathcal{A}_{\theta}(\texttt{prompt}_{\text{M}}(\text{NL})) \end{aligned}$$

Key Components:

- ullet $\mathcal{A}_{ heta}$: Large Language Model with parameters heta
- Q: Quality metric for evaluation
- ullet \mathcal{D} : Distribution of problem instances
- \bullet $\mathtt{prompt}_{\mathrm{M}} :$ Modeling prompt template
- NL: Natural Language Description
- MF: Mathematical Formulation (abstract)
- PD: Problem Data (concrete, solver-ready)

An Overview of our pipeline



- Introduction
- Preliminaries and Overview
- Seedback-Driven PD Generation
- 4 The Data Synthesis and Training Methodology
- 5 Numerical Experiments

Seed Problem Classes

To build our training dataset, we started by curating 53 distinct optimization problem generators, enabling scalable generation of diverse problem instances. Here's a simplified example of our bin packing generator:

```
class BinPackingGenerator:
    def init (self, n items=(3.10), weight range=(1.50),
                bin_capacity=100, seed=None):
        self.params = locals()
       if seed: random.seed(seed)
    def generate_instance(self):
        n = random.randint(*self.params['n_items'])
        weights = {i: random.randint(*self.params['weight_range'])
                for i in range(n)}
        model = gp.Model("BinPacking")
        x = model.addVars(n, n, vtype=GRB.BINARY)
        v = model.addVars(n, vtvpe=GRB.BINARY)
        model.setObjective(v.sum(), GRB.MINIMIZE)
        model.addConstrs((sum(weights[i]*x[i,j]
                    for i in range(n)) <=
                    self.params['bin_capacity']*y[j]
                    for j in range(n)))
        return model
```

4 D > 4 A > 4 B > 4 B >

Problem Data Generation Algorithm

- To ensure a balanced distribution of problem difficulty, we designed an algorithm as shown in Algorithm 1.
- The core idea is to control problem difficulty using LLM and a complexity score function:

$$\begin{split} S(\mathrm{PD}) &= \alpha_{\mathsf{bin}} \mathsf{N}_{\mathsf{bin}} + \alpha_{\mathsf{int}} \mathsf{N}_{\mathsf{int}} + \alpha_{\mathsf{cont}} \mathsf{N}_{\mathsf{cont}} \\ &+ \beta_{\mathsf{lin}} \mathsf{N}_{\mathsf{lin}} + \beta_{\mathsf{indic}} \mathsf{N}_{\mathsf{indic}} + \beta_{\mathsf{quad}} \mathsf{N}_{\mathsf{quad}} \\ &+ \beta_{\mathsf{gen}} \mathsf{N}_{\mathsf{gen}} + \gamma_{\mathsf{BigM}} \ f_{\mathsf{BigM}} + \delta_{\mathsf{expr}} \overline{L_{\mathsf{expr}}} \end{split}$$

Algorithm 1 Feedback-Driven Problem Data Generation

Require: Target complexity range $[S_{\min}, S_{\max}]$, time limits $[T_{\min}, T_{\max}]$, instance generator G, feasibility threshold $\mathcal{F}_{\mathrm{target}}$, max iterations T

Ensure: Configuration Θ such that for $\operatorname{PD}_i \sim G(\Theta)$: $S(\operatorname{PD}_i) \in [S_{\min}, S_{\max}]$ (complexity), $\tau_i \leq T_{\max}$ (solving time), $\operatorname{Pr}(f_i = \texttt{feasible}) > \mathcal{F}_{target}$

1: Initialize parameters via LLM:

$$\Theta_0 \leftarrow \mathcal{L}(\mathtt{prompt}_{\mathrm{IC}}(S_{\min}, S_{\max}, T_{\min}, T_{\max}))$$

- 2: for t = 1 to T do
- 3: Generate N PDs: $\{PD_i\}_{i=1}^N \leftarrow G(\Theta_{t-1})$
- 4: Compute metrics: $S(PD_i)$ (Eq. 4), τ_i (solving time), f_i (feasibility)
- 5: Aggregate statistics: $\bar{S}_t = \frac{1}{N} \sum S(\text{PD}_i), \ \bar{\tau}_t = \frac{1}{N} \sum \tau_i, \mathcal{F}_t = \frac{1}{N} \sum \mathbb{I}(f_i = \text{feasible})$
 - 5: if $\overline{S}_t \in [S_{\min}, S_{\max}]$ and $\overline{\tau}_t \leq T_{\max}$ and $\mathcal{F}_t \geq \mathcal{F}_{\text{target}}$ then
 - : return Θ_{t-1}
- 8: else
- 9: Refine parameters via feedback:
- $\Theta_t \leftarrow \mathcal{L}(\mathtt{prompt}_{\mathrm{RC}}(ar{S}_t, ar{ au}_t, \mathcal{F}_t; \Theta_{t-1}))$
- 10: end if
- 11: end for
- 12: **return** \emptyset (no valid Θ found)

Example: Measuring Problem Complexity

Production Planning Problem:

- Variables:
 - Binary: $y_1, y_2 \in \{0, 1\}$ (production decisions)
 - Integer: $x_1, x_2 \in \mathbb{Z}^+$ (production quantities)
 - Continuous: $z \ge 0$ (total cost)
- **Objective:** min $z + 10y_1 + 8y_2$

Constraint Types:

- **1** Linear: $2x_1 + 3x_2 \le 100$, $x_1 \le 50$, $x_2 \le 30$
- ② Indicator (Big-M): $x_1 \ge 5 100(1 y_1)$
- **9** Quadratic: $z \ge 0.5x_1^2 + 0.3x_2^2$
- Nonlinear: $x_1 e^{x_2} \le 100$

Complexity Analysis:

- Variable counts:
 - 2 binary
 - 2 integer
 - 1 continuous
- Constraint counts:
 - 3 linear
 - 2 indicator
 - 1 quadratic
 - 1 nonlinear
- Big-M frequency: $f_{BigM} = 2$
- Avg expr length: $\overline{L_{\rm expr}} \approx 2.71$
- Score: S = 16.71 (unit weights)

- Introduction
- Preliminaries and Overview
- 3 Feedback-Driven PD Generation
- The Data Synthesis and Training Methodology
- Mumerical Experiments

Bidirectional Data Synthesis Algorithm

We design a three-phase backtranslation pipeline to generate high-quality problem descriptions:

- Initial Generation: LLM generates initial NL description from mathematical formulation and problem data
- Self-Criticism: I I M evaluates the description by examining mathematical equivalence, completeness, and clarity
- **Self-Refinement:** Based on criticism. LLM generates refined descriptions focusing on accuracy and completeness

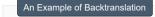
Algorithm 2 Bidirectional Data Synthesis Algorithm

Require: Instance pair $(MF_i, PD_{i,j})$, Max Iteration TEnsure: $(NL_{i,i}, MF'_{i,i}, PD'_{i,i}, OV_{i,i})$

- 1: Initial generation: $NL \leftarrow \mathcal{L}(prompt_{\tau}(MF_i, PD_{i,i}))$
- 2: Initialize: SC = SR = Null
- 3: **for** k = 1, ..., T-1 **do**
 - Self-Criticize: $SC \leftarrow \mathcal{L}(prompt_C(MF_i, PD_{i,i}, NL))$
- Self-Refine: $SR \leftarrow \mathcal{L}(prompt_{P}(MF_{i}, PD_{i,i}, NL, SC, SR))$
- if SR is good enough then
- break
- end if 9. end for
- 10: $NL_{i,i} \leftarrow SR$
- 11: AutoFormulation: $(\mathrm{MF}'_{i,i},\mathrm{PD}'_{i,i}) \leftarrow \mathcal{A}_{\theta}(\mathrm{prompt}_{\mathrm{M}}(\mathrm{NL}_{i,i}))$
- 12: $OV_{i,i} \leftarrow Solve PD_{i,i}$ by Gurobi
- 13: $OV'_{i,i} \leftarrow Solve PD'_{i,i}$ by Gurobi
- 14: if $OV_{i,j} = OV'_{i,j}$ then
- return $(NL_{i,i}, MF'_{i,i}, PD'_{i,i}, OV_{i,i})$
- 16. else
- return Null
- 18: end if

An Example of Backtranslation

- The backtranslation pipeline converts mathematical formulations (MF) and problem data (PD) into human-readable problem descriptions.
- To ensure the correctness. and consistency of generated descriptions with respect to MF and PD, we perform rejection sampling on the outputs.



Input-General Formulation

 $x_i \in \{0, 1\} \quad \forall i \in Sets$

- · ci represents the cost coefficient for each set
- . x is a binary decision variable indicating whether set i is selected
- . Si represents the set of all sets containing element i
- k_i represents the minimum number of times element i needs to be covered

Input-LP File

80000 Selected[1] + 40000 Selected[2] + 20000 Selected[3] + 10000Selected[4] + 80000 Selected[5] + 90000 Selected[6]

Subject To MultiCover e1: Selected[1] + Selected[3] + Selected[5] + Selected[6] >= 4

MultiCover e10: Selected[1] + Selected[4] + Selected[5] + >= 4

Rounde Dinaries

Selected[1] Selected[2] Selected[3] Selected[4] Selected[5] Selected[6] End

Backtranslation

Generator

Output-Natural Language Description

A city is planning the layout of emergency medical stations. There are 6 candidate locations for building medical stations, each with different construction costs:

Location 1: Construction cost \$80.000: Location 2: Construction cost \$40.000

The city is divided into 10 districts, each requiring different numbers of medical stations for coverage due to population density and emergency medical needs:

Districts 1 and 2: require coverage by at least 4 stations: District 3: requires coverage by at least 2 stations Each candidate location can cover specific districts:

Location 1 covers districts: 1, 2, 6, 10: Location 2 covers districts: 3, 5, 6, 9

The objective is to decide which locations should be selected for building medical stations, minimizing the total construction cost

while meeting the coverage requirements for each district. Each location can only be selected or not selected (binary decision).

Forward Modeling and Rejection Sampling

Forward Modeling:

- AutoFormulator transforms NL to MF and PD.
- Uses Chain-of-Thought prompting strategies.
- Generates diverse modeling reasoning paths.

Rejection Sampling Process:

- Compare solutions: $OV'_{i,j}$ (from generated) vs $OV_{i,j}$ (from original).
- Accept if $OV_{i,j} = OV'_{i,j}$.
- Manual validation shows 99.6% accuracy!

CoT Prompt Example

The following is an operations research problem. Let's solve it step by step:

- Identify the decision variables, objective function, and constraints
- Formulate the mathematical model
- Implement the solution using Gurobi in Python
- Verify and interpret the results

Training Strategy

Data Augmentation

- Multiple augmentation strategies including:
 - Problem rewriting
 - Semantic substitution
 - Constraint expansion
- Dual sampling quality control

Augmentation Prompt Examples

- 1. Rewrite the problem using different expressions and terminology while keeping the core optimization task identical.
- 2. Generate a variant by adding/removing/modifying one constraint while maintaining problem feasibility.

Iterative Training Process

- Parameter-efficient fine-tuning with LoRA
- Joint optimization objective:

$$\mathcal{L}_{ ext{SFT}}(heta) = -\mathbb{E}_{(p,y) \sim \mathcal{D}_{ ext{SFT}}} \left[\sum_{t=1}^{|y|} \log P_{ heta}(y_t|y_{< t}, p)
ight]$$

- Introduction
- Preliminaries and Overview
- 3 Feedback-Driven PD Generation
- 4 The Data Synthesis and Training Methodology
- 5 Numerical Experiments

Problem Data Distribution

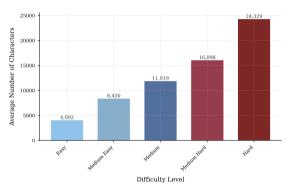


Figure: Distribution of LP file lengths across generated instances by difficulty levels.

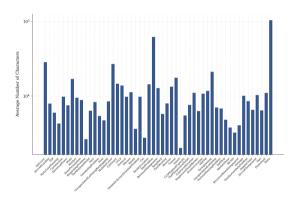


Figure: Distribution of LP file lengths across generated instances by problem types.

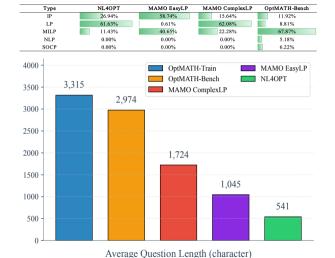
Statistics of the OptMATH Dataset

Problem Length Analysis:

 OptMATH presents significantly more complex problem descriptions compared to existing benchmarks.

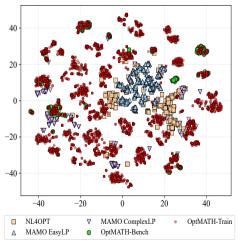
Problem Type Coverage:

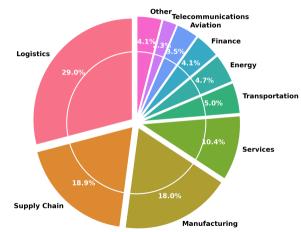
- OptMATH-Bench covers a wide range of optimization problems:
 - Linear Programming
 - Mixed Integer Linear Programming
 - Integer Programming
 - Nonlinear Programming
 - Second-Order Cone Programming



Statistics of the OptMATH Dataset

OptMATH demonstrates comprehensive coverage across both problem space and application domains, with its embeddings surrounding existing benchmarks while spanning diverse industrial scenarios.





Performance Comparison of Models on Different Benchmarks

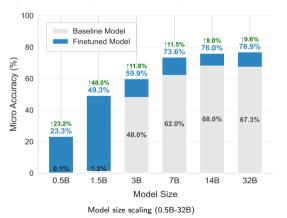
OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

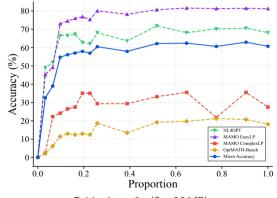
Table 1. Performance Comparison of Models on Different Benchmarks

Types	Models	NL4OPT	MAMO EasyLP	MAMO ComplexLP	OptMATH Bench	IndustryOR	OptiBench	Macro AVG
	Llama3.1-8B(pass@1)	0.0%	0.2%	0.0%	0.0%	0.0%	0.0%	0.1%
Baseline	Qwen2.5-7B(pass@1)	86.9%	83.6%	21.8%	1.6%	10.0%	36.2%	40.0%
	GPT-3.5-turbo(pass@1)	78.0%	79.3%	33.2%	15.0%	21.0%	47.4%	51.4%
	GPT-4(pass@1)	89.0%	87.3%	49.3%	16.6%	33.3%	68.6%	57.4%
	Deepseek-V3(pass@1)	95.9%	88.3%	51.1%	32.6%	37.0%	71.6%	62.8%
	OptiMUS (GPT-4o-2024-05-13)	78.8%	77.0%	43.6%	20.2%	31.0%	45.8%	49.4%
	Qwen2.5-32B(pass@1)	92.7%	82.2%	44.6%	9.3%	16.0%	47.6%	48.7%
Fine-tuning	ORLM-Llama-3-8B (reported)	85.7%	82.3%	37.4%	*	38.0%	*	60.9%
	ORLM-Llama-3-8B (reproduced)	84.5%	74.9%	34.1%	2.6%	24.0%	51.1%	45.2%
	OptMATH-Llama3.1-8B (pass@1)	55.5%	73.9%	40.8%	24.4%	18.0%	55.5%	44.7%
	OptMATH-Qwen2.5-7B (pass@1)	94.7%	86.5%	51.2%	24.4%	20.0%	57.9%	55.8%
	OptMATH-Qwen2.5-32B (pass@1)	95.9%	89.9%	54.1%	34.7 %	31.0%	66.1%	62.0%
Pass@8	OptMATH-Llama3.1-8B	97.6%	94.2%	71.6%	51.6%	37.0%	66.6%	69.8%
	OptMATH-Qwen2.5-7B	98.4%	94.5%	72.5%	56.0%	38.0%	68.1%	71.3%
	OptMATH-Qwen2.5-32B	97.9%	93.9%	75.4%	67.4%	47.0%	76.8%	76.4%

Scaling Analysis on Model Size and Training Data Size

OptMATH demonstrates consistent performance gains across model sizes (0.5B-32B) and training data scales, with larger models achieving better absolute performance while smaller models show higher sensitivity to data scaling.





Many Thanks For Your Attention!